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ABSTRACT

Often alink-state routing takes aform of the cost based scheme
which admits an arriving request on the minimum cost route if
this cost does not exceed the cost of the request, and rejects the
request otherwise. Cost based strategies naturally arise as a
result of optimization of the network performance or

incorporating Quality of Service (Q0S) requirementsinto the

admission and routing processes. In the former case the
implied cost of the resources represents expected future
revenue losses due to insufficient resources for servicing future
requests. In the latter case the cost of a route represents the

expected level of QOS, eg., bandwidth, delay, packet loss,

etc., provided to the request carried on this route. In both cases
due to the aggregation, statistical nature of the resource costs,
delays in disseminating signaling information, non-steady or
adversaria operational environment the cost of the resources
may not be known exactly. Usualy this uncertainty is modeled
by assuming that resource costs are random variables with
fixed probability distributions. We propose to explicitly
recognize that the minimum cost route selection as an ill-posed
problem and to view randomized routing as a regularized
solution to this problem. We consider a specific case of
regularization intended to guard against adversarial uncertainty,
i.e., worst case scenario, with respect to the resource costs lying
within known "confidence' intervals. Assuming that the
network minimizes and the adversarial environment maximizes
the losses resulted from non-optimal admission and routing
decisions due to the uncertainty, we identify the optimal
admission and routing decisions with the Nash equilibrium
strategy in the corresponding game. We explicitly identify this
strategy in a case of paralel, homogeneous structure.

Keywords: randomized routing, minimum cost routing,
uncertainty, regularization, games, Nash equilibrium.

1. INTRODUCTION

Often alink-state routing takes aform of the cost based scheme
which admits an arriving request on the minimum cost route if
this cost does not exceed the cost of the request, and rejects the
request otherwise. Cost based strategies naturally arise as a
result of optimization of the network performance [1] or

incorporating Quality of Service (Q0S) requirements into the
admission and routing processes [2]. In the former case the
implied cost of the resources represents expected future
revenue losses due to insufficient resources for servicing future
requests. In the latter case the cost of a route represents the
expected level of QOS, eg., bandwidth, delay, packet loss,
etc., provided to the request carried on this route. In both cases
due to the aggregation, statistical nature of the resource costs,

delays in disseminating signaling information, non-steady or
adversaria operational environment the cost of the resources
may not be known exactly.

This uncertainty does not affect the routing decisions if the
minimum cost route can be identified with required degree of
confidence. The problem, however, is that due to the very
nature of the minimum cost routing, the minimum cost route
typically cannot be identified with a reasonable degree of
confidence. Indeed, except for some anomalies, the cost of a
link is an increasing function of the link load. Minimum cost
routing increases the load carried on a minimum cost route
until admission control takes over, or at least two routes have
the same cost. This positive feedback attempts to equalize the
costs of several routes with each other and with the cost of a
request, and may cause oscillations in the optima route
selection, which are perceived as route flapping phenomenon
when the frequency of optimal route updates significantly
increases.

Usually, uncertainty in the resource costs is modeled by
assuming that the resource costs are random variables with
fixed probability distributions, which may or may not be
known to the network [2]. From decision theoretic perspective
this approach lies within Bayesian framework [3]. However,
even when the forms of the probability distributions can be
reliably identified, e.g., exponential distributions for the delays,
the parameters of these distributions, e.g., average delays,
remain to be subject to uncertainty within the corresponding
confidence regions, leaving the problems of sensitivity and
instability unresolved. Empirical results suggest that
performance/robustness curve of the routing algorithm can be
often improved by allowing randomization of the routing
decisions [4]. However, Bayesian framework resulted in
deterministic optimal strategies does not allow one to support
and quantify thisclaim.

This paper proposes to tackle the problem of uncertainty in
the resource costs by viewing route cost minimization as an ill-
posed problem [5]. The standard technique for solving ill-
posed problem is regularization, i.e., penalizing solution for
sengitivity to the variable contaminated by noise. We propose
to view randomized routing as a regularized solution to the
route cost minimizatio problem, where regularization is based

on the "confidence region” ¢l C rather than point estimates
C» C for the vector € =(C;) of the link costs C,. In a

situation when link costs lie within certain confidence region,
the set of "acceptable” routes includes all feasible routes, which
may be optimal, given the constraints imposed by the
confidence interval. We propose to regularize solution to the
routing optimization problem by randomizing routing selection
within the optimal set of routes. Different regularization
techniques lead to different randomization among acceptable
routes. This framework can be extended to a situation of



random link costs with probability distributions containing
uncertain parameters.

We consider a specific case of regularization intended to
guard against adversariad uncertainty, i.e, the worst case
scenario, with respect to the resource costs lying within known
confidence regions. Assuming that the network minimizes and
the adversarial environment maximizes the losses resulted from
non-optimal admission and routing decisons due to the
uncertainty, we identify the optimal routing with Nash
equilibrium strategy in the corresponding game. We explicitly
identify the corresponding Nash equilibrium routing strategy in
a case of paralld, homogeneous structure under various
scenarios for the adversaria environment. The game theoretic
framework approach to network management under uncertainty
has been proposed in [6] and then applied to cost based
admission control for a case of asingle feasible routein [7].

Various assumptions on the capabilities of the adversaria
environment to manipulate the link costs produce different
game models. For example, in a case of extremely omnipotent
environment, capable of synchronized selection of the link cost
for al links, the adequate game model includes two players: the
network and the environment. In a case when link costs are
selected independently for different links, the adegquate game
mode! is a non-cooperative game of 1+ L players where the
number of links in the network is L. In this game model one
player representing the network is trying to minimize losses
and other L players representing network links are trying to
maximize losses. Various intermediate scenarios with respect
to synchronization of link costs are possible.

Optimization algorithms, assuming exact knowledge of the
link states, solve the problem of routing instability by splitting
traffic with the same origin-destination among routes of the
same cost. These agorithms are based on rerouting of the
infinitessimal portions of the load, and take form of iterative
process [8] or discontinuous differential equations describing
diding modes [9]. The obvious difficulty of applying these
algorithms is that their sability is guaranteed only
asymptotically as load granularity decreases. Even more
important is that the optimal traffic split seems to be very
sensitive to the unavoidable uncertainties in the fluctuations in
the rates of incoming traffic. Randomization of the routing
decisions can be viewed as an attempt to obtain stable traffic
split.

The paper is organized as follows. Section 2 describes a
minimum cost routing and its randomized version. Section 3
characterizes losses and risks associated with the admission and
routing decisions under uncertainty. Section 4 describes game
theoretic framework for risk management. Section 5 explicitly
identifies the optimal admission strategy by solving the
corresponding game in a case of paralel homogeneous
structure. Finaly, conclusion briefly summarizes results.

2. ROUTING

Minimum Cost Routing: Deterministic Link Costs
In a link-state model a network topology database keeps state
information about nodes and links in the network

x=(x)T X where X, isthevector charaterizing the stateof a

link | and adjacent to thislink nodes. Often the result of sdecting
route I from the set of feesible routes F ={r,...,r } canbe

characterized by some utility function U, = U(X, ) where vector
X =(X :1T r) chareterizes the sate of liks | T r.
Assuming thet rgection of a request has utility zero, the definition of

the utility function can be extended as follows U = 0, where

I = AE means that the request is rejected. Given the network
state X, the optimal routing strategy chooses contral action thet
yiddsthe maximum utility:

r =ag max u 1
opt ng{/E,F} r @

Often link state routing takes form of the cost based scheme with utility
function

it rt @
0 if r=/A

where the cost of an arriving request is W, and the cost of a

routeis C, . Usually the route cost is assumed to be additive:
c, =45.¢ ©)
where the cost of a link | is €. For example network

performance oriented minimum cost schemes weight the revenue
brought by the arriving request W againgt the expected future revenue

losses C, due to insufficient resources for servicing future
requ&stsremltedfromtyingupoe’tainbendwidthonlinks|T r 1.
In this case C, istheimplied cost of alink | . Theutility (2) is

thesurplusvaduei.e., the difference between the revenue brought
by the admitted request W and the implied costs of the

occupied resources C, . Maximization (1) of the utility function (2)
resultsin thefollowing admisson and routing Srategy
irn if cfw

|

Fopt = . @
®OLE I o >w
wheretheroute I, of minimumcogt C, isdetermined by
C. =C, =minc, (5)

* rMmF
The joint problem of rate control and routing based on
resource pricing [10] can be aso presented in form (1)-(2).
Assuming that the user S utility of transmission at rate Yy is

U, (y), and the incremental price of occupying resources on

route I' is C,, areasonable user S is expected to choose his
transmission rate Y and route ri F by solving the
following individual optimization problem [10]:

max {U_(v)- ¢, v} @)

1 F,y30
Optimization problem (7) can be solved as a two step
procedure with first, finding minimum cost route (1)-(2), and,

then, determining the optimal transmission rate 'y = ygpt by

solving equation dU . /dy =c. .

Minimum Cost Routing: Random Link Costs

Assuming that the state of the network X = (x )1 X isa
random varigble with given probebility digribution P(X) , the
optimal routing decision yiddsthe maximum average utility [2)]:

fop =g fmax Efu,] ®

For the cost based scheme (2), the average utility is

iw- E[c] if rt A&
1 . ©)
|

Bul=1 0 if r=A&



In acase of additive cost function (5), the optimd route sdlection (8)
is based on the average link codts. In a case of QOS routing [2]
the utility function is

di (wec) if ri
Voo i r=&

where W characterizes the minimum level of the QO0S

u,

(10)

acceptable for the arriving request, and C, represents the level

of QOS, eg., bandwidth, delay, packet loss, etc., provided to
the request carried on this route.  Typicaly nonlinear,
increasing and concave function j (X) represents the user

utility of receiving QOS W+ X, while the required level of
QoS is W [2]. Function | (X) allows one to describe the
user "soft" QOS requirements. A particular case of user
"hard" QOS requirements corresponds to the following
specific selection of the function j (X) :

. (X|W)_‘I' W ifx >0 (11)
: Yoy ifx<o

with some positive constant W > 0. Note computational
difficulties associated with solving optimization problem (8) in
acase of non-linear function j (X)

The following parameterized family of functions provides
convenient approximation for the utility function j (X) :

i xw,g) =wlt- %) (12)

where W > 0 and g > O are some parameters. Function (12)
is monotonously increasing, concave in X for any
w,g)1 (0,%)2. When wW® ¥, g®0,
wg = b = const, family (12) yields alinear utility function
j (xjw,g)=bX. When w=const, g® ¥, family
(12) yields utility function (11).
Randomized Routing -
Consider a situation when route I | {/E F} is selected with
probability a,, where the admission probability is
a=1-ag,and

da,=1,a,30,"rl {£F} (13)
The expected utility of this randomized routing decision is
— _ 9
u@)=a ;.a Eu] (14)

where the average utility of selecting route r 1 F is Elu,].
Maximization of the expected utility (14) with respect to the
distributiona = (@, )
max u(a,c) (15)
a

subject to constraints (13) yields degenerative solution
a, 1 {0, which describes the optimal deterministic routing
decision based on maximization of the average utility (8). Ina
case of deterministic route costs C = (C, ), this procedure

results in routing (1). Optima solution to (15) is a
discontinuous function of vector C on the hyper planes where

two or more routing decisions are optimal. Since in practica

applications vector C is contaminated by some noise,
optimization problems (8) aswell as (15) areill-posed.

The standard technique for solving an ill-posed problem is
regularization, i.e, pendizing solution a for sengtivity to
contaminated variable C[5]. In a case of a minimum cost
routing (10) it is natural to assume that the vector of link costs

€ =(c,) can be more reliably represented by the "confidence
region” ¢1 C than the point estimate € » C . Define the set

of "acceptable” routing decisions r 1 F. | {# F} tobethe

set of al feasible routing decisions that may be optimal, given
the confidence regions for the link costs. Reasonable
randomized routing strategies assign positive probabilities to an
acceptable routing decision, and zero probability to an
unacceptable routing decision:

a,>0ifrl F (16)

a, =0ifri F 17

This regularization framework can be easily extended to a
case of random link costs by assuming that the form of the
distribution for the vector C is known, but the parameters, e.g.,
moments, are subject to uncertainty within known "confidence

regions'. In the rest of the paper we consider a game theoretic
framework which leads to a specific selection of probabilities

a, satisfying conditions (16)-(17).
3. LOSSESAND RISKS

L osses
The losses resulted from non-optimal network admission and

routing decisions due to the uncertain link costs € = (C;) can
be quantified by the following loss function [6]-[7]:
L(c,r) = max u.c)- u. (c 18
(1) = max u(c)- U, (0 (18)
Combining (18) with (10) we obtain the following expression
for the loss function:
imax{0,j (w-c.)}-j(w-c ) ifrt &
Loy = (0] (W= )} (w- )

. ) (19
max{0,j (w- c.)} if r =/

where C, is given by (5). Function L(X,r) possesses the
following properties:

L(c,r)=0for r=ry ad"cl C

L(c,r)2® 0 for " (c,r)1 CA{A&£r}
for any set of the vectors of link costs " cl C. Thus,

L =max min L(c,r)° 0
mX  dc oA (EF) cr)
L. = min maxL(cr)3 0
mn T EF) dc cr)

Network decision to admit a request on some feasible route
rl F  exposes the network to potentia losses
L*™(c) +L"™(c,r) due to non-optimaity of these
decisions. Network decision to reject a request exposes the
network to potential losses L' (C) due to non-optimality of

the rgjection decision. Loss (19) can be expressed as follows:
L9 0)+ L™ (c,r) ifrt &
L(c,r) =i ( )rq. @) _ (20)
1 L™ (c) if r =4
Rejection, admission and routing losses in (20) are uniquely
identified as follows:



L' (dw) = max{0,j (w- c.)} 1)
L™ (cw) = - min{0,j (w- c.)} 22
n _li(w-c)-j(w-c) ifrt A
L™ (c,r|w) —% 0 . =,£E(23)

Expressions (21)-(23) follow from (19)-(20) and the fact that

L™ (c,r.)° 0, i.e, route sdection (5) does not cause any
loss. Since
L™ (c,r) =L (c)- L*™(c)- | (w-c,),
the total loss (19) can be also rewritten as follows:
N . -

L(c,r)=:'L (c)-re: (w-c) !f r _,CE

1 L™ (c) ifr=/A
It is easy to see that the regjection loss (21) is monotonously

decreasing function and admission risk (22) is monotonously
increasing function with respect to the partial ordering of the

vector of routecosts C = (C, : 11 F). Alsonotethat
L*™(cjw) =0 and L' (dJw) >0 if . <w
L*™(cjw) >0 and L (dw) =0 if . >w

Routing risk is invariant to transformation ¢, ® c, +a:

L (C,I‘|W) =L (c+a,r|w). In a case of separable

uncertainty in thelink costs

¢l lg.q] (24)
it isnatura to introduce binary variables dI 1 {O,]} such that
¢ =(-d)c +dg (25)

and consider the following binary loss function of the binary

vector d = (d,):

S(d,r) = L(C1r)|q:(l—d| )6 +d,G (26)

Substituting (25) into the right-hand side of (21)-(23) one
easily obtains the binary rejection, admission, and routing loss
functions.

Risks

Consider a case when the costs of links C; are mutudly jointly
independent random variables with probability distributions
o} (c|q| ) , which depend on some parameters g, 1 Q, :

P(CIQ) =0 p (g |q|) (27
where C=(C;), g =(0,). Averaging loss function (19)

over probability distribution (27), we obtain the following risk
function, which characterizes the risks resulted from non-
optimal network admission and routing decisions due to the

uncertain parameters g, ] Q:

R@.r) = E-[L(c.,)] = ¢-(c.r)P(dda)  (28)

Using (20)-(23) it is possible to separate total risk function (28)
into rejection, admission, and routing risk functions. Note that
for genera topology network and arbitrary distribution (27)
evauation of the risk functions is a difficult task. Consider a
particular case of parallel structure when different routes do not
overlap, and link costs distributed exponentialy. In this case

the cost of aroute and the minimum cost of afeasible route are
also distributed exponentially:

P: (CIEr ) =1- exp(- C/Er )
where C, = C, (() isthe average cost of aroute I' , and
p.(dc)=1- expl(- ¢/c)
where the average cost of the minimum cost route C, is
determined by the following equation: ]/C* = é (]/Cr )

rl F. 1tis easy to verify that in this case the rejection,
admission and routing risk functions take the following forms:
. ewew _
R® == ¢ (x)e¥*dx
C.

0

-wec. 0
e : c
R =-=— ¢ (xe""dx
¥
rn — e_W/a W- X/Ce e—w/é, W- X/C,
R™ =—— (@ (xe*"dx- —— @ (x)e*"dx
G -¥ r -¥

In a case of utility function (12), these risk functions can be
calculated explicitly:

_ é < u
R'd =wgl+ 1_ (g:_*e—w/a _ e—wg)a’ o« <1
e -+ u

Radm =W @*_ e-W/a’m—* <1
1-

thn :Wg Er - C e-wg’g:—r <1
- o )t o)

and in a case of linear utility function ] (X) = X these risk
functions take the following ssimple forms:
R =w- c.(1- ev)

Radm =Ce w/c,

R" =G, -C
Note that if uncertainty is separable with respect to parameters
q, 1 [qvI ,Cﬂ ] , it is useful to consider the binary risk function
analogous to binary loss function (26).

4. GAME THEORETIC FRAMEWORK

Depending on the ability of the adversaria environment to
coordinate selections of the link costs for different links,
various scenarios for uncertainty are possible. We consider
two extreme cases of completely centralized and completely
decentralized adversaria  environment. Due to space
constraints we only consider a case of deterministic, but
uncertain link costs (24). 1t can be shown that due to concavity
of function ] the optima strategy for the adversaria

environment assigns non-zero probabilities only to low and
upper boundaries ¢, =C, and C, =C, of the feasible

intervals C; 1 [q ,C ] This alows us to deal only with
binary loss function (26).

Centralized Adversarial Environment



Consider a zero-sum game with two players, where player (r)
represents the network, and player (C) represents the
adversarial environment [11]. The set of feasible strategies for
the network is 1| {/A R} and the set of feasible strategies
for the environment is ¢ C . The matrix of payoffs made by
the network to the environment L(C, r|w) is given by (10).
According to this game theoretic framework, the optimal
network strategy 'l {AE R} represents the admission and
routing strategy guarding against the worst case scenario with
respect to the route costs Cl C. The value of the game
\ =V(V\4C, R) represents the expected performance loss

due to the admission and routing decisions I 1 {4 R} fora
single request under incomplete information on the implied
costs of the resources C1 C  selected by adversaria
environment. In a particular case when the payoff function

L(C,I‘|W) has a saddle point, i.e, L™ =0, the

min
environment and the network have pure optimal strategies and
the value of the game is V = 0. In a case when the payoff

function L(C,I‘|W) does not have a saddle point, i.e,

Lnr;?;( > (0, the environment and the network have mixed

optimal strategies which are probability distributions on
cl C ad rl {AR} respectively, and the vaue of the

gameisV > 0.
Note, that according to the centraized scenario the
environment is free to assign non-zero probabilities to all

possible 2" combinations of binary variables d1{0%,
ie.,

@ 1T RT{0g" (29)

Decentralized Adversarial Environment
In the "decentralized" scenario the environment is capable of

random selection of each binary variable d, T {03}, but
selections for different links are independent from each other:

Pr{d, "} = b’ (- b,)*® (30)
MR
where
Pr{d)_1b| if d =1 .
7710 if d =0 ey

This scenario can be modeled as a non-cooperative game of
K +1 players [11]. Player (r) with a set of feasible

strategies r1 {/E R} and utility function - L(C,I‘|W)
represents the network. A player (d;) with a set of feasible
strategies d, 1 {08 and utility function L(C,I’|W)

represents a player sdlecting the cost of the link |. The
network makes admission and routing decisions r | {/ R}

[}
with probabilitesa, * 0, Q a, =1, where the admission
probability is
(32

and the rejection probability is @ , =1- ag. A player

(d,) rendomly selects the binary vaiable d, with

probabilities (31). Selections by al players are independent
from each other, i.e., (30) holds. This sdlection results in the
averageloss

Sb.a)=4a,a sd.nOb’@-b)* @
r d |
The non-cooperative (Nash) equilibrium is determined by
solution to the following optimization problem [11]:
V =S(b",a |w)=min max S(b.ajw) (34
a
subject to constraints
da, =1,a,20,r1 {ER (35)
Of£b, £1,"1 (36)
According to this game theoretic framework, the optimal
network strategy selectas route ri R with probability a : .
The optimal admission probability is a¢ =&a, , r1 R.
The optimal average loss due to uncertainty is represented by
(34).
5. SOLUTION FOR A SYMMETRIC CASE

In this section we explicitly identify the optima network
strategies by solving the corresponding games in a case of
parallel homogeneous structure when costs of al feasible
routes lie within the same confidence interval:

c. 1 [c,c] 37
In this case the network has two pure admission strategies: to
accept or regject an arriving request. Our goal is to find the

optimal admission probability a;. Once admitted, the request
is carried on aroute I' selected equiprobably from the set of
K feasibleroutes: a: =a;/K r1 F.

Centralized Adversarial Environment

Since a case of asingle feasible route K =1 is covered in[7],
in this and next subsections we assume that K 3 2. We
consider K +1 pure strategies for the malicious environment.

Strategy S,, K=0,..,K assigns C, =C for aset of kK
feasible routes I 1 {r.:i=i,,.,1,}, randomly, with equal
probabilities selected from F ={r,,..,r,} and assigns
c, =C forroutes r 1 F\{r, :i =iy,..,i,}. The pay-off
matrix (19) takes the form of the following (K +1)" 2
matrix L = (ij )K'l

k,j:0:
reject accept
Sc: Lo Lyt
where the risk associated with rejection is
_imax{0,j (w- €)} ifk=0,.,K-1
“imax{0,j (w- &)} if k=K
the risk associated with admission is
max{0j (W- &)}-j, ifkEK-1
- mif0,j (w-€)} if k=K

kO

i
Lkl =1
|



and the expected utility of servicing arequest of cost W, given

the environment strategy S, , is
. k. _ ko _
=—j (w-C)+Cl- —3 (w-¢C
= e o) gi 3 w9
A (K+1)" 2 game can be solved explicitly [11]. It is easy to

verify that this game always has a saddle point if K 3 2. The
optimal admission probability is
.10 ifw<w
as | . *
il ifw>w

where W=W is the unique solution to the following
equation:
] (w-¢C)+(K-1j (w-C)=0 (39)
The optimal strategy for the environment is s = Sk* where
" :‘:, K ifw<c
1K-1 ifw>cC
The value of the gameis
i 0 if  wEc
V={jw-¢c) if c<wew
fow -¢) if w>w
For utility function (12) equation (38) can be solved explicitly:
1

. éexp(ee) + (K - Dexp(ee) U
=—| Y
w g Oge8 K H

In a particular case of a linear utility function j (X) © X
equation (38) yields:
. _C+(K-1c
SR D)
K

Decentralized Adversarial Environment
In a case of question the average loss (24) takes the following
form:

S(b.aw) = (@- b*)max{0,j (w- c)} +

b* max{0,j (w- €)}- a[(l- b)j (w- ¢)+bj (w- ¢)]

where b, = b, " rT R. It can be shown that the solution
to the optimization problem (34)-(36) is as follows. The
optimal admission probability is
.10 ifwsw
ag = . *

i1 ifw>w
and the optima sraegy for the environment is

i 0 if  wEw
I 1
G (Wl ). (W &)k *
b =:g W _C) J (iN C)a if w<wgfc
[ e Kj (w- €) u
{ (/K ¥ if w>¢e

where W=W s the unique solution to the following
equation:

j (w-¢)+(K¥-1) w-¢)=0 (39)
For utility function (12) equation (39) can be solved explicitly:

L1 Gexp(e) +(KY - Dexp(gr) U
w —Elogee K]/K u
e u

In a particular case of a linear utility function j (X) © X
equation (39) yields:
. CH(KY* - e
BT

6. CONCLUSIONS

This paper proposes a framework for performance evaluation
and optimization of randomized routing. The framework is
based on interpreting randomized routing as a regularized
solution to the route cost minimization problem. Specia
attention is paid to the game theoretic framework for the
regularization, intended to guard against the worst case
scenario with respect to uncertain parameters lying within
known "confidence" regions. According to this game-theoretic
framework the optimal network strategy is identified with the
Nash equilibrium in the corresponding game. The paper
explicitly identifies the optimal strategy in a case of parald,
homogeneous structure under various assumptions on the
ability of adversarial environment to manipulate the link costs.
Future efforts should be directed towards developing
computationally feasible solutions for the corresponding games
for more realistic topologies.
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